首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   15篇
  国内免费   13篇
化学   202篇
晶体学   1篇
力学   2篇
数学   16篇
物理学   24篇
  2023年   5篇
  2022年   2篇
  2021年   6篇
  2020年   18篇
  2019年   10篇
  2018年   12篇
  2017年   1篇
  2016年   2篇
  2015年   7篇
  2014年   12篇
  2013年   14篇
  2012年   13篇
  2011年   13篇
  2010年   10篇
  2009年   11篇
  2008年   11篇
  2007年   15篇
  2006年   20篇
  2005年   14篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1992年   4篇
  1991年   2篇
  1989年   3篇
  1986年   1篇
  1985年   3篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
排序方式: 共有245条查询结果,搜索用时 15 毫秒
1.
Using reverse thinking of the aggregation-induced emission (AIE) principle, we demonstrate an ingenious and universal protocol for amplifying molecular motions to boost photothermal efficiency of fibers. Core–shell nanofibers having the olive oil solution of AIE-active molecules as the core surrounded by PVDF-HFP shell were constructed by coaxial electrospinning. The molecularly dissolved state of AIE-active molecules allows them to freely rotate and/or vibrate in nanofibers upon photoexcitation and thus significantly elevates the proportion of non-radiative energy dissipation, affording impressive heat-generating efficiency. Photothermal evaluation shows that the core–shell nanofibers with excellent durability can reach up to 22.36 % of photothermal conversion efficiency, which is 26-fold as the non-core–shell counterpart. Such a core–shell fiber can be used for photothermal textiles and solar steam generation induced by natural sunlight with green and carbon-zero emission.  相似文献   
2.
Functional materials with multi-responsive properties and good controllability are highly desired for developing bioinspired and intelligent multifunctional systems. Although some chromic molecules have been developed, it is still challenging to realize in situ multicolor fluorescence changes based on a single luminogen. Herein, we reported an aggregation-induced emission (AIE) luminogen called CPVCM, which can undergo a specific amination with primary amines to trigger luminescence change and photoarrangement under UV irradiation at the same active site. Detailed mechanistic insights were carried out to illustrate the reactivity and reaction pathways. Accordingly, multiple-colored images, a quick response code with dynamic colors, and an all-round information encryption system were demonstrated to show the properties of multiple controls and responses. It is believed that this work not only provides a strategy to develop multiresponsive luminogens but also develops an information encryption system based on luminescent materials.  相似文献   
3.
Targeted delivery and specific activation of photosensitizers can greatly improve the treatment outcome of photodynamic therapy. To this end, we report herein a novel dual receptor-mediated bioorthogonal activation approach to enhance the tumor specificity of the photodynamic action. It involves the targeted delivery of a biotinylated boron dipyrromethene (BODIPY)-based photosensitizer, which is quenched in the native form by the attached 1,2,4,5-tetrazine unit, and an epidermal growth factor receptor (EGFR)-targeting cyclic peptide conjugated with a bicycle[6.1.0]non-4-yne moiety. Only for cancer cells that overexpress both the biotin receptor and EGFR, the two components can be internalized preferentially where they undergo an inverse electron-demand Diels–Alder reaction, leading to restoration of the photodynamic activity of the BODIPY core. By using a range of cell lines with different expression levels of these two receptors, we have demonstrated that this stepwise “deliver-and-click” approach can confine the photodynamic action on a specific type of cancer cells.  相似文献   
4.
Mechanistic studies promote scientific development from phenomena to theories.Aggregation-induced emission(AIE),as an unusual photophysical phenomenon,builds the bridge between molecular science and aggregate mesoscience.With the twenty-year development of AIE,restriction of intramolecular motion(RIM)has been verified as the working mechanism of AIE effect.In this review,these mechanistic works about RIM are summarized from experimental and theoretical perspectives.Thereinto,the experimental studies are introduced from three parts:external rigidification,structural modification and structural characterization.In the theoretical part,calculations on the low-frequency motion of AIEgens have been performed to prove the RIM mechanism.By virtue of the theoretical calculations,some new mechanisms are proposed to supplement the RIM,such as restriction of access to conical intersection,suppression of Kasha transition,restriction of access to dark state,etc.It is foreseeable that the RIM mechanism will unify the photophysical theories for both molecules and aggregates,and inspire more progress in aggregate science.  相似文献   
5.
Organic materials with multiple emissions tunable by external stimuli represent a great challenge. TTPyr, crystallizing in different polymorphs, shows a very rich photophyisics comprising excitation-dependent fluorescence and phosphorescence at ambient conditions, and mechanochromic and thermochromic behavior. Transformation among the different species has been followed by thermal and X-ray diffraction analyses and the emissive features interpreted through structural results and DFT/TDDFT calculations. Particularly intriguing is the polymorph TTPyr(HT), serendipitously obtained at high temperature but stable also at room temperature, whose non-centrosymmetric structure guarantees an SHG efficiency 10 times higher than that of standard urea. Its crystal packing, where only the TT units are strongly rigidified by π-π stacking interactions while the Pyr moieties possess partial conformational freedom, is responsible for the observed dual fluorescence. The potentialities of TTPyr for bioimaging have been successfully established.  相似文献   
6.
Molecules with Möbius topology have drawn increasing attention from scientists in a variety of fields, such as organic chemistry, inorganic chemistry, and material science. However, synthetic difficulties and the lack of functionality impede their fundamental understanding and practical applications. Here, we report the facile synthesis of an aggregation‐induced‐emission (AIE)‐active macrocycle (TPE‐ET) and investigate its analogous triply and singly twisted Möbius topologies. Because of the twisted and flexible nature of the tetraphenylethene units, the macrocycle adjusts its conformations so as to accommodate different guest molecules in its crystals. Moreover, theoretical studies including topological and electronic calculations reveal the energetically favorable interconversion process between triply and singly twisted topologies.  相似文献   
7.
8.
9.
Single crystals of two liquid crystal compounds, 5‐{[4′‐(((pentyl)oxy)‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO5) and 5‐{[(4′‐nonyloxy‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO9), have been prepared by solution growth technique. The morphologies and structures of A3EO5 and A3EO9 crystals were investigated by wide angle X‐ray diffraction (WXRD), atom force microscope (AFM) and transmission electron microscope (TEM). In contrast to the same series of compounds which have a longer alkyl tail, 5‐{[(4′‐heptoxy‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO7), 5‐{[(4′‐heptoxy‐4‐biphenylyl)oxy]carbonyl}‐1‐pentyne (A3E′O7) and A3EO9, A3EO5 shows strikingly different crystalline behavior. The former three compounds have only one crystal form, whereas A3EO5 exhibits polymorphism. Specifically, A3EO5 crystals grown from toluene solution show two crystal forms. The first one is crystal I which adopts a monoclinic P112/m space group with unit cell parameters of a?5.79 Å, b?8.34 Å, c?43.92 Å, γ?96°, and the other one is crystal II which adopts a monoclinic P112 space group with unit cell parameters of a?5.55 Å, b?7.38 Å, c?31.75 Å, γ?94°. When using dioxane as the solvent to grow A3EO5 crystal, we can selectively obtain crystal I. A3EO5 melt‐grown crystals also have two crystal forms which derive from crystal I and crystal II, respectively. The different crystalline behavior of the compounds should correlate with their different electron dipole moment resulting from the different length of alkyl tail.  相似文献   
10.
The traditional design strategies for highly bright solid-state luminescent materials rely on weakening the intermolecular π–π interactions, which may limit diversity when developing new materials. Herein, we propose a strategy of tuning the molecular packing mode by regioisomerization to regulate the solid-state fluorescence. TBP-e-TPA with a molecular rotor in the end position of a planar core adopts a long-range cofacial packing mode, which in the solid state is almost non-emissive. By shifting molecular rotors to the bay position, the resultant TBP-b-TPA possesses a discrete cross packing mode, giving a quantum yield of 15.6±0.2 %. These results demonstrate the relationship between the solid-state fluorescence efficiency and the molecule's packing mode. Thanks to the good photophysical properties, TBP-b-TPA nanoparticles were used for two-photon deep brain imaging. This molecular design philosophy provides a new way of designing highly bright solid-state fluorophores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号